Sabtu, 04 Maret 2017

Mind Map Barisan Dan Deret

Image result for mind map barisan dan deret aritmatika

mind map limit trigonometri

Related image

Contoh gambar kardus lucu

Image result for gambar kotak kardus bagus          Image result for gambar kotak kardus bagus


Image result for gambar kotak kardus bagus     Image result for gambar jaring - jaring kotak kardus lucu

Image result for gambar jaring - jaring kotak kardus lucu

Soal dan Pembahasan Barisan dan Deret Geometri

1.   Dari barisan geometri dengan suku-suku positif, diketahui suku ke-3 adalah 4, dan besarnya suku ke-9 adalah 256,  besarnya suku ke-12 adalah ....
A.      2048               D. 2056
B.      2050               E. 2062
C.      2054         
jawaban    :  A
U3 = 4      → ar2 = 4
           U9 = 256  → ar8 = 256
           ar8/ ar2 = 256/4 
                   r6 = 64
                    r = 2,    
maka  ar2 = 4  → a.22 = 4 → a = 1
 Un   =  arn -1
  U12 =  1 . 211 = 2048

2.      Diketahui deret geometri dengan suku pertama 6 dan suku keempat adalah 48. Jumlah enam suku pertama deret tersebut adalah ….
                A.    368                   D. 379
B.    369                   E. 384
C.    378
 (UN 2008 P45)
Jawaban : C
Diketahui :
suku pertama = a = 6
suku keempat = U4 = ar3 = 48
6.r3  = 48
   r3  = 8 maka r = 2
Jumlah 6 suku pertama = S6
 

Soal dan Pembahasan Barisan dan Deret Aritmatika

Soal 1:
Rumus suku ke-n barisan aritmatika 94, 90, 86, 82, ... adalah...
a. Un = 90 + 4n
b. Un = 94 + 4n
c. Un = 94 - 4n
d. Un = 98 - 4n
Pembahasan:
Suku pertama = a = 94
Beda = b = 90 - 94 = -4
suku ke-n = Un = a + (n-1) b
                 = 94 + (n-1) -4
                 = 94 + (-4n) + 4
                 = 94 + 4 - 4n
                 = 98 - 4n (pilihan d)

Soal 2:
Dari barisan aritmatika diketahui suku ke-3 = 14 dan suku ke-7 = 26. Jumlah 18 suku pertama adalah....
a. 531
b. 603
c. 1.062
d. 1.206
Pembahasan:
U3 = 14
a + (3-1) b = 14
a + 2b = 14 ...... (persamaan pertama)

U7 = 26
a + (7-1) b = 26
a + 6b = 26 .... (persamaan dua)

Selanjutnya persamaan satu dan persamaan dua kita kurangkan:


Lalu kita ambil persamaan pertama untuk mencari nilai a:
a + 2b   = 14 (kita ganti b dengan 3, karena hasil b = 3)
a + 2(3) = 14
a + 6    = 14
a      = 14-6
a      = 8

Selanjutnya kita masukkan a = 8 dan b = 3 pada rumus jumlah suku atau Sn untuk mencari jumlah 18 suku pertama:
Sn  = n/2 (2a + (n-1)b)
S18 = 18/2 (2.8 + (18-1)3)
       = 9 (16 + 17.3)
       = 9 (16 + 51)
       = 9. 67
       = 603 (pilihan b)

SOAL LIMIT FUNGSI TRIGONOMETRI

Soal No. 1
Tentukan hasil dari soal limit berikut

Pembahasan
Cara pertama dengan rumus yang ada diatas, sehingga langsung didapatkan



atau dengan cara kedua yang lebih panjang, memakai turunan, 3x turunkan jadi 3 dan sin 4x turunkan jadi 4 cos 4x, kemudian ganti x dengan nol


Soal No. 2
Tentukan hasil dari soal limit berikut

Pembahasan
Identitas trigonometri berikut diperlukan



Setelah diubah bentuknya gunakan rumus dasar di atas


Soal No. 3
Nilai dari 

A. 6 
B. 5 
C. 4 
D. 2 
E. 0 
(UN Matematika 2014 IPA)

Pembahasan
Faktorkan x2 − 1 dengan mengingat bentuk a2 − b2 = (a − b)(a + b). Kemudian uraikan sin2 (x − 1) menjadi sin (x − 1) sin (x − 1) dan tan (2x − 2) menjadi tan 2(x − 1). Coret seperlunya.


RANGKUMAN LIMIT FUNGSI TRIGONOMETRI

RUMUS DASAR LIMIT FUNGSI TRIGONOMETRI



Identitas trigonometri berikut diperlukan 

Rumus untuk cos 2x  (dalam soal ini dipakai rumus yang pertama)


Jumat, 03 Maret 2017

RANGKUMAN BARISAN DAN DERET

Menentukan Rumus Suku ke-n suatu barisan
Pasangan suku-suku berurutan dari suatu barisan aritmatika mempunyai beda yang sama, maka
U2=a+b
U3=U2+b=(a+b)+b=a+2b
U4=U3+b=(a+2b)+b=a+3b
U5 = U4 + b = (a + 3b) + b = a + 4b
Berdasarkan pola tersebut, dapatkah sobat menentukan suku ke-7, suku ke-26 hingga suku ke-90? Dengan menggunakan pola diatas kita dapat mengetahui dengan mudah suku-suku tersebut.
U7=a+b
U26=a+25b
U90 = a + 89b
Sehingga berdasarkan runtutan penjelasan diatas untuk suku ke-n dapat kita peroleh menggunakan rumus :
Un = a + (n – 1)b, untuk n bilangan asli

DERET ARITMATIKA

Yang dimaksud dengan deret aritmatika adalah penjumlahan dari semua anggota barisan aritmatika secara berurutan. Contoh dari deret aritmatika yaitu 7 + 10 + 13 + 16 + 19 + …
Misalnya kita ambil n suku pertama,  jika kita ingin menentukan hasil dari deret aritmatika sebagai contoh untuk 5 suku pertama dari contoh deret diatas. Bagaimana caranya?
7 + 10 + 13 + 16 + 19 = 65
Nah untuk 5 suku pertama, masih mungkin kita menghitung manual seperti diatas. Seandainya kita akan menentukan jumlah dari 100 suku pertama, apakah masih mungkin kita menghitung manual seperti itu. Walaupun bisa tetapi pastinya akan memakan waktu yang cukup lama. Nah kali ini akan kita tunjukkan cara menentukannya, sebagai contohnya untuk mennetukan jumlah 5 suku pertama dari contoh diatas.
Misalkan S5=7 + 10 + 13 + 16 + 19, sehingga
Walaupun dengan cara yang berbeda tetapi menunjukkan hasil yang sama yaitu 65. Perhatikan bahwa S5 tersebut dapat dicari dengan mengalikan hasil penjumlahan suku pertama dan suku ke-5, dengan banyaknya suku pada barisan, kemudian dibagi dengan 2. Analogi dengan hasil ini, jumlah n suku pertama dari suatu barisan dapat dicari dengan rumus berikut:
Sn = (a + Un) × n : 2
Dikarenakan Un = a + (n – 1)b, sehingga  rumus di atas menjadi
Sn = (2a + (n – 1)b) × n : 2

SISIPAN DAN DERET ARITMATIKA
Sisipan pada deret aritmatika yaitu menambahkan beberapa buah bilangan diantara dua suku yang berurutan pada suatu deret aritmatika sehingga diperoleh deret aritmatika yang baru. Sebagai contoh :
Deret mula-mula = 4 + 13 + 22 + 31 +……
Setelah disisipi = 4 + 7 + 10 + 13 + 16 + 19 + 22 + 25 + 28 + 31 +……
Untuk beda dari deret baru ini biasanya dinyatakan dengan b1, dapat ditentukan dengan rumus berikut :
b1 = b/(k+1)
b1 = beda deret baru
b = beda deret mula-mula
k = banyak bilangan yang disisipkan